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Inviscid hypersonic flow on cusped concave surfaces 

By PHILIP A. SULLIVANT 
Imperial College, London 

(Received 7 June 1965) 

An analysis of the exact equations of the inviscid flow of a perfect gas over cusped 
concave bodies is described. The field is examined in the limit of infinite free- 
stream Mach number Hm. The slope of the shock wave in a small region adjacent 
to the leading edge is strongly dependent on M,, while much further down- 
stream the shock-wave slope is controlled primarily by the body slope. Conse- 
quently the region near the leading edge introduces into the field downstream a 
thin layer of gas, adjacent to the body, where the entropy is much lower than 
that of the gas above it. This layer is so dense that the gas velocity along it is not 
appreciably slowed by the pressure gradient along the body. However, it is so 
thin that there is little pressure change across it. 

The well-known self-similar solutions to the hypersonic small-disturbance 
equations have previously only been used to study the flow on blunted slender 
convex surfaces. They are known to behave singularly at the body. It is shown 
that there is a region on concave power-law shapes where the self-similar solutions 
are the correct first approximation to the exact inviscid equations in the limit 
M, -+ a; and that, further, they predict the correct first-order surface pressure. 

Numerical results for surface pressure from the similar solutions are presented, 
and comparisons are made with certain approximate theories available for more 
general shapes. Pressure measurements taken on a cubic surface in the Imperial 
College gun tunnel are presented and compared with the theoretical distributions. 

1. Introduction 
In the development of the theory of inviscid hypersonic flow, applications 

have been primarily confined to convex bodies. Recently, however, interest in 
such problems as the separated boundary layer and the hypersonic intake has 
directed attention towards the corresponding concave-surface problem. 

Inviscid concave-surface flows can differ considerably from those over a con- 
vex surface. Typically, leading-edge bluntness effects tend to be much less 
important. The compression waves on a concave surface can form shock waves in 
addition to the shock wave generated by the leading edge. Shear layers and 
strong finite reflected Mach waves are generated by this shock formation, and 
by the interaction of this shock wave with the leading-edge shockwave. Such 
flow fields generally have a complicated structure. For simplicity this paper is 
limited to the discussion of the flow fields in which there is only one concave 
shock wave present. 
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Hypersonic small-disturbance theory introduces two major simplifications 
into the analysis. One is the well-known hypersonic similarity rule. The other is 
the equivalence principle, by which a steady hypersonic slender-body flow can 
be reduced to an unsteady flow in a space of one fewer dimensions. 

The equivalence principle allows the well-known self-similar solutions to the 
equations of one-dimensional unsteady flow to be applied to the two-dimensional 
steady hypersonic flow. The most comprehensive available treatment of these 
solutions is given by Sedov (1959, pp. 136-304), and a discussion of their applica- 
tion to hypersonic flow is given by Hayes & Probstein (1959, ch. 2). There are 
several conditions for the existence of self-similarity. The gas must be both 
thermally and calorically perfect. The body shape in the equivalent hypersonic 
flow must be plane or axially symmetric, and have the form yb = Dxk, where x 
is the streamwise variable, and y is the lateral variable. The free-stream Mach 
number M, must be such that the shock-wave angle is very much larger than 
that of a free-stream Mach wave: B l /M,.  The oblique shock relations can 
then be taken as those for M, = co, and the shock is said to be strong. The limiting 
shock shape is then similar to the body shape: ys = DSxk. The similar solution 
can be regarded as a first approximation to the asymptotic development of the 
field in powers of 6 = Mg2. 

When the exponent k < 1, the solution represents the flow in the slender 
regions of a blunted slender convex surface. With k = 1 the body is a wedge 
or cone. When k > 1 the body is cusped and concave. Only those solutions for 
k < 1 have been discussed in any detail in the literature. 

There are a number of physical difficulties associated with the similar solutions. 
When k < 1 the equivalence principle fails near the leading edge, since the body 
slope dy,/dx+co as x --f 0; and when k > 1 it  fails far downstream since 
dy,/dx --f co as x -+ 00. The strong-shock assumption fails far downstream from 
the leading edge when k < 1, since dyb/dx + 0 as x -+ co; and it fails for a small 
region near the origin when k > 1, since dy,/dx -+ 0 as x -+ 0. The similar solu- 
tions behave singularly near the body. When k < 1 the expression for the tem- 
perature becomes infinite as y -+ yb, and when k > 1 the expression for the 
density becomes infinite as y -+ yb. In  both cases the pressure remains finite. 
This behaviour was pointed out by Lees & Kubota (1957). The systematic 
investigation of the regions where the similar solutions behave unsatisfactorily 
in the hypersonic flow was not undertaken until quite recently. Yakura (1962), 
by considering the inverse problem, and Freeman (1962), by considering the 
direct problem, have given more satisfactory interpretations of the behaviour 
of the field in these regions for k < 1. 

In  this paper the behaviour of the field on a cusped concave body in the limit 
Ma -+ co is examined. The structure of the field adjacent to the origin, where the 
shock is never strong, is discussed; and its effect on the field downstream is 
examined. An analysis of the field near the body, where on power-law surfaces 
the self-similar solutions behave singularly, is given. It is shown that there is a 
region on power-law surfaces where the similar solutions are the correct first 
approximation to the exact inviscid equations in the limit M, -+ co. 

Some values of surface pressure obtained from the similar solutions for two- 
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dimensional surfaces are presented and are compared with values calculated by 
certain approximate methods which are available for more general shapes. 

Finally, to demonstrate the usefulness of the inviscid concept of hypersonic 
flow on concave surfaces, some pressure measurements obtained on a cubic 
surface in the Imperial College hypersonic gun tunnel will be described. 

2. Singular behaviour of the similar solutions 
Consider the inviscid hypersonic flow of a gas about a body in which there is 

only one shock wave present. The well-known oblique shock relations can be 
put in the form: 

PS/PW u2 = (s/r) + {2/(r + I)} {sin2 0- - S}, (a)  

(2.1) (b)i (4 
PmlPs = ((7 - l)l(r + 1)) + {Wr + 1,) {&/sin2 4 9  

us/ U = {2/(y + I)} cot a(sin2 cr - S}, 
(us/ U) - 1 = - (2/(y + 1)} (sin2 CT - S}, (4 

where the shock shape is given by y = y,(x); t ang  = dys/dx. The quantity p 
is the pressure, p is the density, uis the velocity in the x-direction, v is the velocity 
in the y-direction, and y is the ratio of the specific heats. U is the free-stream 
velocity, and pw is the free-stream density. The subscript s denotes conditions 
immediately downstream of the shock wave. 

In  a hypersonic flow about a slender body with a characteristic slope r ,  rr 
is at most O(T) for sufficiently large A!&. Then inspection of the oblique-shock 
relations shows that 

PslPm u2 W2), PslPm - O(l),  v, /u  om, U,lU = 1 + 0(T2) .  

The hypersonic small-disturbance equations are then derived from the exact 
inviscid equations by the usual argument. They are 

together with an equation for (u - U )  which is of higher order, and is not required 
here. The small disturbance approximations to the shock relations are equa- 
tions (2.1) with sinv 21 g N tancr. The small-disturbance approximation to the 

(2.3) 
body condition v/u = dyb/dX is 

at y = yb(x); the subscript b denotes conditions at  the body. 

shows that with p ,  p and v replaced by 

v b  = udyb/dx 

By an elegant application of dimensional methods, Sedov (1959, p. 146) 
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and the independent variables replaced by 

h = y /Dx” ,  y b  = D x ~ ,  ( 2 . 5 )  

then equations ( 2 . 2 ~ )  to ( 2 . 2 ~ )  for a power-law body reduce to ordinary differen- 
tial equations. If it is further assumed that & l /Mm,  then the shock shape 
approaches the form ys  = D , x ~ .  The oblique shock relations for p ,  p and v then 
become 

P s = ( 2 / ( y + 1 ) ) k 2 ,  R,= ( ~ + l ) / ( y - l ) ~  V , =  2 k / ( ~ + l ) ,  (2.6 ) 

at A, = DJD. The body condition (equation ( 2 . 3 ) )  becomes V, = k at h = 1 .  
It is more convenient to use the quantity 6 = V - k as the independent vari- 

able. The shock wave then corresponds to the point 6 = - { ( y -  l) /(y+ 1 ) } k ,  
and the body to the point 6 = 0. If the quantity 2 = yP/R is introduced, the 
problem can be reduced t o  one differential equation in Z and two quadratures. 
2 is proportional to the temperature. The equation for Z is 

2 [P +j(Y - 1,) t3 + {(k - 1) (3 - Y) +j(Y - 1) k) t2 
a2 _ -  + k ( k -  1)  (1 - 7) 5- 2Z(t+ ( k  - 1)lY)l 
d6 - 6 [ 5 3 + ( 2 k 7 3 ) 6 2 + k ( k -  1 ) ~ - 2 { ( 1 + j ) ~ + 2 ( k - l ) / y + ( j + l ) k ) ] ’  (2’7) 

The equations for h and R are not required here. Equation (2.7) is a variant of 
the form given for 2 by Sedov (1959, p. 155).  

Consider now the behaviour of equation ( 2 . 7 )  near the body, that is, as [ + 0. 
It can be easily shown that the only self-consistent assumption is that Zit  + oc 
as 5 + 0, whence it follows that 

2 N zap, (2.8) 

where 
2 ( k -  1) 

2 ( k - - ) + y k ( l + j )  
a =  (2.9) 

and 2, is a constant. When k < 1, Z + 03 as 5 -+ 0, but when k > 1,  2 + 0 as 
6 -+ 0. A similar analysis shows that R N h = 1 + A,<, P = Pb + P, 5, 
where R,, A,, and PI are constants. Thus in the similar solutions the density and 
the temperature show a singular behaviour near the body, but the pressure 
remains finite. When k < 1 ,  Z -+ 03 and R -+ 0 as h + 1 ,  whereas, when lc > 1, 
Z- t  0 and R+co as A +  1. 

3. The leading-edge region 
To interpret the behaviour of the similar solutions near the body for k > 1, 

it  is necessary to study the behaviour of the field near the leading edge in the 
limit M, -+ 03 or 6 + 0, and to consider the leading-edge effect on the field down- 
stream of it. Although the similar solutions are the major interest, the remarks to  
be made in this and the following section apply to any cusped concave body, and 
can easily be generalized to include any concave surface which has a leading-edge 
angle BL such that 8, = O ( l / M , )  = O(S4). 

The formation of a shock wave by a cusped surface is discussed by Courant 
& Freidrichs (1948, pp. 107-15 and p. 294) .  For the present purpose it is sufficient 
to note that the Mach waves generated by the cusped surface always intersect 
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at a sufficient distance from the surface, and that the envelope of the region 
where the Mach waves intersect forms a cusp. This cusp is the nearest point of 
the envelope to the leading edge of the surface. Because the solution inside the 
envelope is unacceptable, it is assumed in the classical treatment that a shock 
wave grows from the envelope cusp. It is here assumed that this shock wave is 
the only one present in the inviscid hypersonic flow on a cusped surface. If the 
curvature of the cusped surface at the leading edge is zero, then the envelope 
cusp lies on the Mach wave which passes through the leading edge; if it is not 
zero, the envelope cusp lies between the leading-edge Mach wave and the surface. 
In both cases the envelope cusp must lie upstream of the point Q, defined as 
the intersection of the extrapolation of the leading-edge Mach wave and the sur- 
face. In the latter case the shock wave must cross into the free stream upstream 
of Q. 

The shape of the cusped surface may be expressed in the form 

yb = Dzk + 0(xk+l) as II: -+ 0, 

where k > 1. The equation of the Mach wave starting from the leading edge is 
y = z tan ( l/Nw); and as M, + this becomes y = x64. Thus xQ = [69/D]1/k-1, 
y s  = D[G9/Dlklk--l and (dy,/dx), = k64. This suggests that near Q, and for some 
region downstream of Q, the shock slope a N O(63). That part of the field on a 
cusped body for which u N O(6,) is called the leading-edge region. It is to be 
distinguished from the very much smaller region extending downstream from 
the leading edge where the classical small-perturbation approximation 

a N 64 = l/Mm 
holds. 

The orders of magnitude of the quantities in the leading-edge region may be 
estimated by using the oblique-shock relations for that portion of the shock wave 
in the leading-edge region and in the free stream. Thus, with 

sina N t ang  2: O(69) 
in equations (2.1), we have 

where I is a typical length. A convenient length I is D11(l--lC). These are, of course, 
the relative orders of magnitude required to derive the small-disturbance equa- 
tions. Thus, in the limit 6 - t  0, the first approximation to the exact inviscid 
equations in the leading-edge region is always the hypersonic small-disturbance 
equations. However, since a N 0(6&), it  is not possible to use the strong-shock 
approximation in the leading-edge region; even on power-law shapes it is not 
possible to obtain a solution except by additional approximation or numerical 
methods. 
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4. The low-entropy layer 
Sufficiently far downstream of the leading edge, the slope of the shock wave 

depends primarily on the body slope, and in the limit is independent of illm; 
that is cr N O( 1) as 6 --f 0. Hence the limiting properties of the field immediately 
behind this part of the shock wave must also be independent of Ma. However, 
the limiting field properties in the leading-edge region are strongly dependent 
on M,. It follows that the leading-edge region introduces into the field down- 
stream a layer of gas, adjacent to the body, in which certain field properties 
are strongly dependent on M,. Moreover, the entropy in the leading-edge 

Yi, 

Slender region 

FIGURE 1. The flow regions on a cusped concave surface immersed in 
an inviscid hypersonic flow. 

region and in the layer it introduces downstream is not much greater than the 
free-stream entropy. But the increase in entropy across that part of the shock 
wave where cr N O(1) as 6 -+ 0 is O(lnM2) as 6 -+ 0. For this reason, the layer 
adjacent to the body is called here a low-entropy layer. The regions in the field 
on a cusped body are depicted in figure 1. Region I is the leading-edge region. 
Region 11-called the outer region-contains the fluid which crossed the shock 
wave downstream of I. Region I11 is the low-entropy layer; it  contains the gas 
which passes through the region I. Since I is vanishingly small in the limit 6 -+ 0, 
then I11 must also be vanishingly thin in that limit. 

Consider the orders of magnitude of the field properties in 111. From equation 
(3.1) ys IV O(yb)  N O(Sk/2(k-1)) in I, so that the mass flux through I, and hence 
through 111, is 

+s/pw up+i = yl+i N 0(8k(l+m(k--ll) ,  (4.1) 

where @ denotes the stream function. We expect the pressure in I11 to be of the 
order of the pressure behind the shock in 11. Thus p/pw U2 N O( 1) as 6 -+ 0 
in 111, since N O(1) as 6 -+ 0 in 11. But from equation (3.1) p/p, N O(1) and 
p/pW U2 - O(6) in I. Since the quantity p/pY is constant between points on a 
streamline not cut by a shock wave, i t  follows that in I11 the density ratio 
pip, is O(6-1/y). The density distribution is thus strongly Mach-dependent and 
p/p, -+ 00 as S -+ 0. We shall assume that the velocity along I11 remains of the 
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order U.  It then follows from equation (5.1) and the behaviour of the density in 
I11 that the thickness of I11 must be 

where a is the quantity defined in equation (2.9) for the similar solutions. 
To construct the equations of the low-entropy layer, the usual boundary-layer- 

type co-ordinates are introduced. A point is specified by its distance n along a 
normal to the body surface and arc length s along the body measured from some 
suitable reference point. If v, and us are the components of velocity in the n- 
and s-directions respectively, then the equations of inviscid motion of a perfect 
gas are 

(4.3) 
a a 
- (pv, yi)  fan (pun yi( 1 + n/R)} = 0, as 

where R ( x )  is the longitudinal curvature of the body profile y = ya(z). 
Now, in 111, n N 0(61/a~), and we have assumed v,/U N O(1). Inspection of the 

continuity equation shows that, if the analysis is to yield non-trivial results, 
then we must have v, - O(611ay). The following system of reduced variables is 
introduced : 

(4.7) 1 PlP* U2 = p', PIP* = &-1'yp', 
VJU = Wyv:,, VJU = v;, 

S I l  = SI ,  n/1 = S1layn', 

where the primed variables are assumed to be O(1) as S + 0 in 111. The fist-  
order approximations to equations (4.3) to (4.6) are 

av; av; 
'as' Itan' 

v'-+v'-=O, (4.9) 

ap'lan' = 0, (4.10) 

(4.11) 

According to equation (4.9) v, is constant along streamlines. In  I, u = U + O(6) 

vs(s',n') = vs(s' = 0 , n ' )  = U .  (4.12) 
so that, in 111, 

Equation (4.10) asserts that the pressure is constant along normals to the surface. 
Hence in the limit 6 -+ 0 

p'(s',n' = 0)  = ph = p'(s',n') = p'(s',n' = 00) = pl (s ,  0) ,  (4.13) 
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where p'(s, 0) is the pressure at the inner edge of 11. The streamline distribution 

where $ = PIP?'(@) is given only by a solution for region I. However, since the 
surface streamline does not cross a shock wave, the surface density is given by the 
simple expression 

and 
The physical interpretation of the above analysis is as follows. In the leading- 

edge region the speed of the gas is not reduced much below its free-stream value. 
Downstream in the low-entropy layer, the density of the gas becomes so high 
that the momentum of the gas is large and the pressure gradient along the body 
cannot slow i t  appreciably. The gas speed remains close to the free-stream value. 
However, the layer is so thin that there is little pressure difference across it. 
Then the pressure at the body is, to the first order, the same as that at the inner 
edge of 11. 

Consider now the effect of the low-entropy layer on the solution in 11. Since 
the thickness of I11 is 0(81j"y), the first approximation to the inner-boundary 
condition on I1 is just the usual body condition 

(zf/u),,, = dyb/dx+ O(8""'). (4.14) 

It follows from equation (2.1) that the error introduced into the solution in I1 
by using the strong-shock approximation is O(8). When k > 1, 

Pb/Pa3 = {yp'(s, O )  M$)lly 
-+ co as M, -+ co. 

l i v  > (2+ (j I- 1) Y)/2Y, 

so that l/ay > 1 for the usual values of y. Typically, for k = 3 and y = 1.4, 
l / q  = 1.61 if j = 0,  and l/ay = 2-21 if j = 1. Thus, the error imposed on the 
solution in I1 by equation (4.14) is always of higher order than that imposed by 
using the strong-shock approximation. 

The scaling of the variables in I11 shows that the error imposed on the first 
approximation to the normal-momentum equation (4.10) by neglecting the 
convective terms in equation (4.5) is O(W'~(z/a-l~), and by neglecting the centri- 
fugal term is 0(8(1/~)(1/~-1)) = O ( W + j ) / 2 ( k - - l ) ) .  The quantity k(1 + j ) / 2 ( k -  1) < 1 
only i f j  = 0 and when k > 2. Hence the error incurred by using equation (4.13) 
to estimate the surface pressure from a solution in I1 is of lower order than that 
imposed by the strong-shock approximation on plane shapes if k > 2. By retain- 
ing the centrifugal term in equation (4.10) and using equation (4.12), a very 
simple correction for the centrifugal pressure rise across I11 can be given, provided 
that a solution for region I is available. The surface pressure at the body is given 
by P(n' = 0) = pb = P(?b = 0)  U@l/R, 

where $I N O(SklZ(k--l)) is the mass flux of gas through I. 
The characteristic feature of region I1 is that in the limit M, -+ co or S-+ 0 

the strong shock approximation can be applied to the shock-wave relations. 
But even with this simplification it is not generally possible to obtain a solution 
in region I1 in closed form without making additional approximations. 
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The analysis of the low-entropy layer has been made without using the slender- 
body approximation. However, in the limit N, -+ 00 there must be a region on 
a cusped surface where the body is slender and hence cr < 1, but where a/M, 1. 
Both the hypersonic small-disturbance equations and the strong-shock approxi- 
mation can be applied in this region. In  fact, immediately downstream of I 
there must be a region where cr -+ 0 as S 3 0 but where a/& -+ 00 as 6 -+ 0. This 
may be expressed as cr N O(SP) with & > /3 > 0. Given this order assumption it 
is then possible to derive both the hypersonic small-disturbance equations and 
the strong-shock limit as the first approximation to the exact inviscid equations 
and the oblique-shock relations. Furthermore, by using the assumption cr N O(cW), 
the arguments leading to the derivation of the low-entropy-layer equations can 
be repeated for the slender region. Typically, pip, is O(6@fl-1)~~) in that part of 
the low-entropy layer for which u N O(SP). Also, the ratio of the error imposed 
on the solution in I1 by the low-entropy layer to the error imposed by finite 
M, at the shock wave tends to zero as M, -+ co, as it does far downstream. On 
power-law shapes, the similar solutions are the correct first approximation to 
the exact inviscid equations of the field in that part of I1 which is in the slender 
region. 

It is instructive to compare the properties of the low-entropy layer with those 
of the entropy layer generated on a blunted slender body. The former is associ- 
ated with the failure of the strong-shock approximation, whereas the latter is 
generated by the failure of the slender-body approximation at  the nose. Both 
have constant pressure across the layer but in other respects they differ. The 
low-entropy layer is cold and dense, and the velocity is nearly constant across it; 
the entropy layer is hot and a t  low density, and the velocity varies rapidly across 
it. The entropy layer can displace the outer region by an amount which imposes 
a lower-order error than that imposed by the strong-shock approximation. 
Freeman (1962), in an analysis of the similar solutions, has shown that the thick- 
ness of the entropy layer is (in the present notation) O ( S - l ~ a ~ )  where a < 0,  
sincek< 1. Fork<2(y+1)/(2+y(3+j)},(- l /ay)< 1. 

5. Numerical results from the similar solutions: comparison with 
approximate theories 

The equations for the self-similar solutions were integrated for j = 0 and 
k > 1 on the University of London Digital Computer. Details of the method 
used and the tabulated numerical values are given by Sullivan (1963). 

Some values of surface pressure obtained from the similar solutions are pre- 
sented here, and are compared with values estimated by using certain approxi- 
mate methods available for more general shapes. The approximate methods 
used are: (1) the simple wave (or shock expansion) theory; (2) the tangent 
wedge rule; (3) Newtonian plus centrifugal formula. These methods are described 
in the standard texts on hypersonic flow. See, for example, Hayes & Probstein 
(1959) and Chernyi (1961). They are used here in their small-disturbance form. 

In figure 2, the quantity PJk2 = Ph/pm Uz8& obtained from the similar solu- 
tions, is plotted as a function of k for y = 1-4. In figure 3, PJk2 is plotted as 
a function of y for k = 4. In  both cases the other estimates of Pb/k2 are obtained 
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and the shock-layer thickness 5 = (y, - yb)/yb. 
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The pressure distributions estimated for a surface having the shape yb = x3/150 
are given in figure 4. In  this case estimates from the simple-wave theory for 
M, = 7.5 and 10 are included to demonstrate its behaviour. 

The Newtonian plus centrifugal theory agrees moderately well with the 
similar solutions when y = 1.4, and the results in figure 3 show that the agreement 
improves rapidly as y approaches one. Since the tangent-wedge rule accounts 
only for the shock-pressure rise, the difference between the tangent-wedge 
estimate and that of the similar solutions is a measure of the centrifugal-pressure 
rise across the layer. 

1.6 

I I ! 

M ,  = 10 /- 
i 

- Notation 
Similar solution 

Simple wave - - -  
- ---- Tangent-wedge 

Experiment 

The simple-wave theory overestimates the surface pressure, and the error 
rapidly increases as Mm -+ 00. To justify use of this theory it must be shown that 
the Mach waves generated at the surface (called principal waves) are much 
stronger than the Mach waves generated at  the shock wave and streamlines and 
which travel toward the surface (called reflected waves). The behaviour of the 
simple-wave theory shown in figure 4 suggests that there are strong reflected 
waves present in the field. A possible explanation of this behaviour is as follows. 
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Part of the argument usually given to show that the reflected Mach waves 
generated in the flow over a slender convex surface can be very weak is that the 
reflected Mach waves generated at the shock tend to cancel those generated at 
the streamlines. Hayes & Probstein (1959, p. 268), show that the wavesgenerated 
at  the shock are usually compressions, and those at  the streamlines are expan- 
sions. But, if their argument is repeated for a concave surface when the shock 
wave is also concave, it can be shown that both types of reflected wave are 
expansions, and must therefore add. The reflected waves should therefore be 
much stronger in a concave-surface flow. 

In  the similar solutions the shock shape is given by ys = A, Dxk. Therefore, 
the quantity < = A,- 1 can be used as a measure of the shock-layer thickness. 
In  figure 3, < is plotted as a function of y for k = 4.0. The shock layer is fairly 
thin for moderate values of y and becomes very thin as y approaches one. 

6. Experimental verification 
Pressure measurements were taken on a surface having the shape described in 

figure 4 in the Imperial College hypersonic gun tunnel. This facility is described 
by Needham (1963). 

The tests were conducted at nominal free-stream Mach numbers (Nm) of 
7.5 and 10. The stagnation pressure was 1590 psia and the stagnation temperature 
was 800°K for all tests. With these conditions the free-stream unit Reynolds 
number was 6.0 x 105/in. at M, = 7.5 and 3.2 x 105/in. a t  M, = 10. In the present 
tests, the tunnel was fitted with a conical nozzle having an exit-plane diameter 
of Sin. and an included angle of 20". Because of instrumentation limitations, 
measurements were only taken downstream of the point for which 0, = 10". 
This point is marked by an arrow in figure 5 (plate 1). Details of the preliminary 
experiments, and the procedures used to correct for the ambient flow non- 
uniformities generated by the conical nozzle, are given by Sullivan (1963). 

Figure 5 (plate 1) is a schlieren photograph of the field generated on the surface 
at M, = 10. A shock wave grows from the leading edge of the model. Down- 
stream the compression waves generate a concave shock wave which intersects 
the leading-edge shock wave. The concave shock wave is not visibly deflected 
by the leading-edge shock wave, and it follows that it is much stronger than the 
leading-edge shock wave at  their line of intersection. The presence of the leading- 
edge shock wave is neglected in the interpretation of the present results. A 
schlieren photograph of the field taken when N, = 7.5 showed a similar struc- 
ture. 

To obtain an independent check of the centrifugal-pressure rise, the surface 
was extended as a ramp, that is, at constant slope 0, = 28". The pressure a t  the 
beginning of the ramp should be that given by the similar solutions, while 
sufficiently far downstream the pressure should approach that generated by a 
wedge having the same slope as the ramp. This is the value predicted by the 
tangent-wedge theory. Thus, the pressure fall-off, Ap, along the ramp should 
approach 

Ap !z pm U28:(P,/k2(k,y) - &(r + 1)) as Mm -+ CO. (6.1) 
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The pressure distributions obtained on the surface are given in figure 4. 
There is good agreement with the values predicted by the similar solutions. The 
pressure distribution on the ramp appears to flatten out a t  the end of the ramp, 
suggesting that the tangent-wedge value has been attained. The experimental 
and theoretical values of the quantity N = Aplpm U28: are compared in table 1. 
There is good agreement, but the measurements need to be confirmed by ex- 
tending the ramp. 

Experimental 
A 

I , 
Theoretical M ,  = 7.5 M ,  = 10 

N 0.55 0.54 0.58 

TABLE 1 

In this experiment, the photograph in figure 5 suggests that the self-similar 
flow was obtained only in a relatively small region at  the rear of the surface. A 
larger region would be obtained on a surface for which lc < 3. 

7. Conclusions 
Two main points emerge from the analysis. The first is that the low-entropy 

layer only affects the solution in the outer region by an amount which is of higher 
order than the Mach-number effect at  the shock wave. Hence, to extend the 
similar solutions towards the leading edge it is initially only necessary to include 
Mach-number effects at the shock wave. 

The second point is the usefulness of the thin-shock-layer theory for concave- 
surface flows. The similar solutions show that the shock layer can be very 
thin. This occurs partly because the centrifugal effects tend further to compress 
the gas in the layer. This contrasts with the behaviour on convex surfaces, where 
the centrifugal effects tend to throw the shock wave out from the body. Of 
course the thin-shock-layer theory cannot be used downstream of a discontinuity 
in profile slope or curvature. 

Although the experiment described here gave very good agreement with the 
similar solutions, it would be desirable to extend the measurements toward 
the leading edge. It would also be of considerable interest to probe the low- 
entropy layer by measuring the density distribution across the shock layer. 

The author acknowledges the considerable help and advice given him by 
Mr J.L.Stollery and Dr N.C.Freeman, both of Imperial College. The work 
described in this paper formed part of a Ph.D. thesis submitted to the Univer- 
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FIGURE 5 .  Schlieren photograph of flow gcnernted on a cubic surface in t.he 
Imperial College liypersonic gun tunnel. M ,  = 10. 
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